首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10017篇
  免费   801篇
  国内免费   1篇
  2023年   25篇
  2022年   25篇
  2021年   185篇
  2020年   127篇
  2019年   180篇
  2018年   291篇
  2017年   220篇
  2016年   360篇
  2015年   587篇
  2014年   664篇
  2013年   685篇
  2012年   932篇
  2011年   852篇
  2010年   557篇
  2009年   472篇
  2008年   658篇
  2007年   543篇
  2006年   491篇
  2005年   472篇
  2004年   406篇
  2003年   346篇
  2002年   298篇
  2001年   194篇
  2000年   186篇
  1999年   133篇
  1998年   61篇
  1997年   43篇
  1996年   26篇
  1995年   46篇
  1994年   40篇
  1993年   31篇
  1992年   57篇
  1991年   51篇
  1990年   62篇
  1989年   42篇
  1988年   35篇
  1987年   33篇
  1986年   30篇
  1985年   39篇
  1984年   27篇
  1983年   28篇
  1982年   20篇
  1981年   23篇
  1979年   21篇
  1975年   15篇
  1974年   18篇
  1973年   19篇
  1971年   23篇
  1970年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 37 毫秒
101.
Nanoclusters are anchored to membranes, either within them or in the cytoplasm latched onto the cytoskeleton, whose reorganization can regulate their activity. Nanoclusters have been viewed in terms of cooperativity and activation; here we perceive nanocluster organization from a conformational standpoint. This leads us to suggest that while single molecules encode activity, nanoclusters induce specificity, and that this is their main evolutionary aim. Distinct, isoform‐specific nanocluster organization can drive the preferred effector (and ligand) interactions and thereby designate signalling pathways. The absence of detailed structural information across the nanocluster, due to size and dynamics, hinders an in‐depth grasp of its mechanistic features; however, available data already capture some of the principles and their functional ‘raison d'être’. Collectively, clustering lends stability and reduces the likelihood of proteolytic cleavage; it also increases the effective local concentration and enables efficient cooperative activation. However, clustering does not determine the ability of the single molecule to function. Drugs targeting nanoclusters can attenuate activity by hampering cooperativity; however, this may not perturb activation and signalling, which originate from the molecules themselves, and as such, are likely to endure. What then is the major role of nanoclustering? Assuming that single molecules evolved first, with a subsequent increase in cellular complexity and emergence of highly similar isoform variants, evolution faced the threat of signalling promiscuity. We reason that this potential risk was thwarted by oligomerization and clustering; clustering confers higher specificity, and a concomitant extra layer of cellular control. In our Ras example, signalling will be more accurate as a dimer than as a monomer, where its isomer specificity could be compromised.  相似文献   
102.

Background

Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes.

Results

A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2.

Conclusions

Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.  相似文献   
103.
IntroductionDisease activity and therapy show an impact on cellular and serological parameters in patients with systemic lupus erythematosus (SLE). This study was performed to compare the influence of mycophenolate mofetil (MMF) and cyclophosphamide (CYC) therapy on these parameters in patients with flaring, organ-threatening disease.MethodsSLE patients currently receiving CYC (n = 20), MMF (n = 25) or no immunosuppressive drugs (n = 22) were compared using a cross-sectional design. Median disease activity and daily corticosteroid dose were similar in these treatment groups. Concurrent medication, organ manifestations, and disease activity were recorded, and cellular and serological parameters were determined by routine diagnostic tests or flow cytometric analysis. In addition follow-up data were obtained from different sets of patients (CYC n = 24; MMF n = 23).ResultsAlthough both drugs showed a significant effect on disease activity and circulating B cell subsets, only MMF reduced circulating plasmablasts and plasma cells as well as circulating free light chains within three months of induction therapy. Neither MMF nor CYC were able to reduce circulating memory B cells. MMF lowered IgA levels more markedly than CYC. We did not observe a significant difference in the reduction of IgG levels or anti-dsDNA antibodies comparing patients receiving MMF or CYC. In contrast to MMF, induction therapy with CYC was associated with a significant increase of circulating CD8+ effector T cells and plasmacytoid dendritic cells (PDCs) after three months.ConclusionsThe results indicate differences between MMF and CYC with regard to the mechanism of action. MMF, but not CYC, treatment leads to a fast and enduring reduction of surrogate markers of B cell activation, such as circulating plasmablasts, plasma cells and free light chains but a comparable rate of hypogammaglobulinemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0603-8) contains supplementary material, which is available to authorized users.  相似文献   
104.
IntroductionC-X-C motif chemokine 10 (CXCL10) is produced in response to interferon-γ, and tumor necrosis factor-α (TNF-α) triggers the accumulation of activated lymphocytes. CXCL13 is constitutively expressed in secondary lymphoid tissues, and the expression is upregulated by TNF-α, via T cell stimulation. It appears that CXCL10 and CXCL13 could play a potential role in the pathogenesis of adult-onset Still’s disease (AOSD), therefore, we investigated the associations between CXCL10 and CXCL13 levels and clinical manifestations in patients with active AOSD.MethodsBlood samples were collected from 39 active AOSD patients, 32 rheumatoid arthritis (RA) patients and 40 healthy controls (HC). Of the AOSD patients, follow-up samples were collected from 15 9.6 ± 9.2 months later. Serum levels of CXCL10 and CXCL13 were determined using enzyme-linked immunosorbent assay. CXCL10, CXCL13, and C-X-C chemokine receptor type 3 (CXCR3) expression levels in biopsy specimens obtained from 26 AOSD patients with skin rashes were investigated via immunohistochemistry.ResultsThe CXCL10 levels in AOSD patients (1,031.3 ± 2,019.6 pg/mL) were higher than in RA (146.3 ± 91.4 pg/mL, p = 0.008) and HC (104.4 ± 47.9 pg/mL, p = 0.006). Also, the CXCL13 levels of AOSD patients (158.8 ± 151.2 pg/mL) were higher than those of RA (54.4 ± 61.1 pg/mL, p < 0.001) and HC (23.5 ± 18.1 pg/mL, p < 0.001). Serum CXCL10 levels correlated with ferritin and systemic scores. Serum CXCL13 levels correlated with those of hemoglobin, C-reactive protein, ferritin, and albumin, and systemic scores. In follow-up AOSD patients, the levels of CXCL10 and CXCL13 fell significantly (153.7 ± 130.1 pg/mL, p = 0.002, and 89.1 ± 117.4 pg/mL, p = 0.001, respectively). On immunohistochemistry, the percentages of inflammatory cells expressing CXCL10 ranged from 1 to 85 %, CXCL13 from 1 to 72 %, and CXCR3 from 2 to 65 %. The percentage of CXCL10-positive inflammatory cells was higher in skin biopsy samples exhibiting mucin deposition than in those that did not (p = 0.01). CXCL13 levels were correlated with those of CD4 and CD68.ConclusionsSerum CXCL10 and CXCL13 levels may serve as clinical markers for assessment of disease activity in AOSD. CXCL10/CXCR3 and CXCL13 may contribute to the inflammatory response, especially skin manifestations thereof, in AOSD.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0773-4) contains supplementary material, which is available to authorized users.  相似文献   
105.
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively.  相似文献   
106.
107.
The purpose of this study was to investigate if multi-domain cognitive training, especially robot-assisted training, alters cortical thickness in the brains of elderly participants. A controlled trial was conducted with 85 volunteers without cognitive impairment who were 60 years old or older. Participants were first randomized into two groups. One group consisted of 48 participants who would receive cognitive training and 37 who would not receive training. The cognitive training group was randomly divided into two groups, 24 who received traditional cognitive training and 24 who received robot-assisted cognitive training. The training for both groups consisted of daily 90-min-session, five days a week for a total of 12 weeks. The primary outcome was the changes in cortical thickness. When compared to the control group, both groups who underwent cognitive training demonstrated attenuation of age related cortical thinning in the frontotemporal association cortices. When the robot and the traditional interventions were directly compared, the robot group showed less cortical thinning in the anterior cingulate cortices. Our results suggest that cognitive training can mitigate age-associated structural brain changes in the elderly.

Trial Registration

ClnicalTrials.gov NCT01596205  相似文献   
108.
Non-selective effects, like genetic drift, are an important factor in modern conceptions of evolution, and have been extensively studied for constant population sizes (Kimura, 1955; Otto and Whitlock, 1997). Here, we consider non-selective evolution in the case of growing populations that are of small size and have varying trait compositions (e.g. after a population bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a random limit composition, and that the distribution of compositions “freezes” to a steady state. This final state is crucially influenced by the initial conditions. We obtain these findings from a combined theoretical and experimental approach, using multiple mixed subpopulations of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al, 2009) as model system. The experimental results for the population dynamics match the theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all analyzed parameter regimes. In summary, we show that exponential growth stops genetic drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g. genetic drift), which investigated how traits spread and eventually take over populations (fixate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply growth influences non-selective evolution, and how it plays a key role in maintaining genetic variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al, 2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding populations.  相似文献   
109.
110.

Background

Early detection of cancer is an effective and efficient cancer management strategy. In South Korea, the National Health Insurance administers the National Cancer Screening Program to its beneficiaries. We examined the impact of the National Cancer Screening Program on socioeconomic disparities in cancer stage at diagnosis.

Methods

Cancer patients registered in the Korean Central Cancer Registry from January 1, 2010 to December 31, 2010 with a diagnosis of gastric cancer (n = 22,470), colon cancer (n = 16,323), breast cancer (n = 10,076), or uterine cervical cancer (n = 2,447) were included. Income level was divided into three groups according to their monthly contribution of National Health Insurance. We employed absolute (age-standardized prevalence rate, slope index of inequality) and relative (relative index of inequality) measures to separately examine social disparities among participants and non-participants of the National Cancer Screening Program in terms of the early-stage rate.

Results

Age-standardized prevalence rates of early-stage by income group were always higher in participants than in non-participants. Furthermore, the age-standardized prevalence rate of early-stage in the low income group of the participants was also higher than that of the high income group of the non-participants. The sizes of disparities (both slope index of inequality and relative index of inequality) are smaller in participants compared to non-participants.

Conclusion

National Cancer Screening Program participation reduced income disparity in cancer stage at diagnosis. Population-based cancer screening programs can be used as an effective measure to reduce income disparity in cancer care.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号